Download movAv. m (siehe auch movAv2 - eine aktualisierte Version, die eine Gewichtung erlaubt) Beschreibung Matlab enthält Funktionen namens movavg und tsmovavg (Zeitreihen gleitender Durchschnitt) in der Financial Toolbox, movAv ist entworfen, um die grundlegende Funktionalität dieser zu replizieren. Der Code hier gibt ein schönes Beispiel für die Verwaltung von Indizes innerhalb Schleifen, die verwirrend sein können, um mit zu beginnen. Ive bewusst bewahrt den Code kurz und einfach, um diesen Prozess klar zu halten. MovAv führt einen einfachen gleitenden Durchschnitt durch, der in einigen Situationen verwendet werden kann, um laute Daten wiederherzustellen. Es funktioniert, indem man den Mittelwert der Eingabe (y) über ein gleitendes Zeitfenster nimmt, dessen Größe durch n angegeben ist. Je größer n ist, desto größer ist der Glanzgrad der Wirkung von n relativ zur Länge des Eingangsvektors y. Und effektiv (gut, Art von) schafft einen Tiefpass-Frequenz-Filter - siehe die Beispiele und Überlegungen Abschnitt. Da die Menge an Glättung, die durch jeden Wert von n gegeben wird, relativ zu der Länge des Eingangsvektors ist, ist es immer wert, verschiedene Werte zu testen, um zu sehen, was angemessen ist. Denken Sie auch daran, dass n Punkte in jedem Durchschnitt verloren gehen, wenn n 100 ist, die ersten 99 Punkte des Eingangsvektors enthalten nicht genügend Daten für einen 100pt Durchschnitt. Dies kann durch Stapeln von Durchschnittswerten etwas vermieden werden, z. B. der Code und das Diagramm unten vergleichen eine Anzahl unterschiedlicher Längenfensterdurchschnitte. Beachten Sie, wie glatt 1010pt mit einem einzigen 20pt Durchschnitt verglichen wird. In beiden Fällen gehen insgesamt 20 Datenpunkte verloren. Erstellen Sie xaxis x1: 0.01: 5 erzeugen Rauschen rausschalten 4 Rausch repmat (randn (1, ceil (numel (x) noiseReps)), noiseReps, 1) Rauschumformung (Rauschen, 1, Länge (Rauschen) noiseReps) Generieren Sie ydata noise yexp ( (Y, 10) 10 pt y3 movAv (y2, 10) 1010 pt y4 movAv (y, 20) 20 pt y5 movAv (y, 40) 40 pt (X, y, y2, y3, y4, y5, y6) Legende (Rohdaten, 10pt gleitender Durchschnitt, 1010pt, 20pt, 40pt, 100pt) xlabel (x) ylabel (x, y, y2, y3, y4, y5, y6) Y) Titel (Vergleich der gleitenden Durchschnitte) movAv. m Code Durchlauffunktion Ausgang movAv (y, n) Die erste Zeile definiert den Funktionsnamen, Ein - und Ausgänge. Die Eingabe x sollte ein Vektor von Daten sein, um den Durchschnitt zu durchführen, n sollte die Anzahl der Punkte sein, um den Durchschnitt über die Ausgabe auszuführen, wird die gemittelten Daten enthalten, die von der Funktion zurückgegeben werden. VorbereitungsausgangNaN (1, Numel (y)) Mittelpunkt von n midPoint Runde finden (n2) Die Hauptarbeit der Funktion erfolgt in der for-Schleife, aber vor dem Start werden zwei Dinge vorbereitet. Zuerst wird die Ausgabe als NaNs vorgegeben, dies diente zwei Zwecken. Zuerst ist die Vorveröffentlichung in der Regel gute Praxis, da es das Gedächtnis-Jonglieren reduziert, das Matlab zu tun hat, zweitens macht es es sehr einfach, die gemittelten Daten in eine Ausgabe zu bringen, die die gleiche Größe wie der Eingangsvektor hat. Dies bedeutet, dass die gleiche xaxis später für beide verwendet werden kann, was für das Plotten bequem ist, alternativ können die NaNs später in einer Zeile des Codes entfernt werden (Ausgabeausgabe (Die Variable midPoint wird verwendet, um die Daten in dem Ausgangsvektor auszurichten N 10, 10 Punkte werden verloren, weil für die ersten 9 Punkte des Eingangsvektors es nicht genügend Daten gibt, um einen 10-Punkt-Durchschnitt zu nehmen. Da die Ausgabe kürzer als die Eingabe ist, muss sie ordnungsgemäß ausgerichtet werden Verwendet werden, so dass eine gleiche Menge an Daten am Anfang und am Ende verloren geht und die Eingabe wird mit dem Ausgang durch die NaN-Puffer, die bei der Vorverteilung der Ausgabe erzeugt werden, mit einer Ausrichtung von 1: Länge (y) - n, (A: b) ban berechnen Mittelwert (amidPoint) Mittelwert (y (a: b)) Ende In der for-Schleife selbst wird ein Mittelwert über jedes aufeinanderfolgende Segment der Eingabe übernommen. Die Schleife läuft für a Definiert als 1 bis zur Länge des Eingangs (y), abzüglich der Daten, die verloren gehen (n) Wenn der Eingang 100 Punkte lang ist und n 10 ist, läuft die Schleife von (a) 1 bis 90. Dies ist möglich Bedeutet, dass der erste Index des zu gemittelten Segments bereitgestellt wird. Der zweite Index (b) ist einfach an-1. Also auf der ersten iteration, a1. N10 So b 11-1 10. Der erste Durchschnitt wird über y (a: b) übernommen. Oder x (1:10). Der Durchschnitt dieses Segments, das ein einzelner Wert ist, wird im Ausgang am Index amidPoint gespeichert. Oder 156. Auf der zweiten Iteration, a2. B 210-1 11 So wird der Mittelwert über x (2:11) übernommen und im Ausgang (7) gespeichert. Bei der letzten Iteration der Schleife für eine Eingabe der Länge 100, a91. B 9010-1 100 so wird der Mittelwert über x (91: 100) übernommen und im Ausgang (95) gespeichert. Dies verlässt den Ausgang mit insgesamt n (10) NaN-Werten am Index (1: 5) und (96: 100). Beispiele und Überlegungen Umzugsdurchschnitte sind in manchen Situationen sinnvoll, aber sie sind nicht immer die beste Wahl. Hier sind zwei Beispiele, wo sie nicht unbedingt optimal sind. Mikrofonkalibrierung Dieser Satz von Daten repräsentiert die Pegel jeder Frequenz, die von einem Lautsprecher erzeugt und von einem Mikrofon mit einer bekannten linearen Antwort aufgezeichnet wird. Der Ausgang des Lautsprechers variiert mit der Frequenz, aber wir können diese Variation mit den Kalibrierdaten korrigieren - die Ausgabe kann in der Höhe angepasst werden, um die Schwankungen der Kalibrierung zu berücksichtigen. Beachten Sie, dass die Rohdaten verrauscht sind - das bedeutet, dass eine kleine Frequenzänderung eine große, unberechenbare Änderung der Ebene zu berücksichtigen scheint. Ist das realistisch oder ist dies ein Produkt der Aufzeichnungsumgebung Es ist in diesem Fall sinnvoll, einen gleitenden Durchschnitt anzuwenden, der die Pegelfrequenzkurve glättet, um eine Eichkurve zu liefern, die etwas weniger unregelmäßig ist. Aber warum ist dies nicht optimal in diesem Beispiel Mehr Daten wäre besser - Mehrere Kalibrierungen läuft gemittelt zusammen würde das Rauschen im System zerstören (solange es zufällig) und eine Kurve mit weniger subtilen Details verloren zu machen. Der gleitende Durchschnitt kann sich nur annähern, und kann einige höhere Frequenz Dips und Peaks aus der Kurve, die wirklich existieren zu entfernen. Sinuswellen Mit einem gleitenden Durchschnitt auf Sinuswellen hebt sich zwei Punkte hervor: Die allgemeine Frage der Wahl einer vernünftigen Anzahl von Punkten, um den Durchschnitt zu übertreffen. Es ist einfach, aber es gibt effektivere Methoden der Signalanalyse als die Mittelung von oszillierenden Signalen im Zeitbereich. In dieser Grafik ist die ursprüngliche Sinuswelle blau aufgetragen. Lärm wird hinzugefügt und als orangefarbene Kurve aufgetragen. Ein gleitender Durchschnitt wird an verschiedenen Punkten durchgeführt, um zu sehen, ob die ursprüngliche Welle wiederhergestellt werden kann. 5 und 10 Punkte liefern vernünftige Ergebnisse, aber entfernen Sie nicht das Geräusch ganz, wo, wie eine größere Anzahl von Punkten beginnen, Amplitude Detail zu verlieren, wie der Durchschnitt erstreckt sich über verschiedene Phasen (denken Sie daran, die Welle oscilates um Null, und Mittel (-1 1) 0) . Ein alternativer Ansatz wäre, ein Tiefpassfilter zu konstruieren, als es auf das Signal im Frequenzbereich angewendet werden kann. Ich werde nicht ins Detail gehen, da es über den Rahmen dieses Artikels hinausgeht, aber da das Rauschen beträchtlich höhere Frequenz als die Wellen-Grundfrequenz ist, wäre es in diesem Fall ziemlich einfach, einen Tiefpassfilter zu konstruieren, als die Hochfrequenz zu entfernen Lärm. Created am Mittwoch, den 08. Oktober 2008 um 20:04 Uhr Zuletzt aktualisiert am Donnerstag, den 14. März 2013 um 01:29 Uhr Geschrieben von Batuhan Osmanoglu Hits: 41486 Moving Average In Matlab Oft finde ich mich in der Notwendigkeit, die Daten zu generieren, die ich den Lärm reduzieren muss ein bisschen. Ich schrieb paar Funktionen, um genau das zu tun, was ich will, aber Matlabs in Filterfunktion gebaut funktioniert auch ziemlich gut. Hier schreiben wir über 1D - und 2D-Mittelung von Daten. 1D-Filter kann mit der Filterfunktion realisiert werden. Die Filterfunktion benötigt mindestens drei Eingangsparameter: den Zählerkoeffizienten für den Filter (b), den Nennerkoeffizienten für den Filter (a) und die Daten (X) natürlich. Ein laufender Durchschnittsfilter kann einfach definiert werden durch: Für 2D-Daten können wir die Funktion Matlabs filter2 verwenden. Für weitere Informationen darüber, wie der Filter funktioniert, können Sie Folgendes eingeben: Hier ist eine schnelle und verschmutzte Implementierung eines 16 x 16 gleitenden Durchschnittsfilters. Zuerst müssen wir den Filter definieren. Da alles, was wir wollen, gleicher Beitrag aller Nachbarn ist, können wir einfach die Funktion benutzen. Wir teilen alles mit 256 (1616), da wir nicht die allgemeine Ebene (Amplitude) des Signals ändern wollen. Um den Filter anzuwenden, können wir einfach folgendes ausführen. Die Ergebnisse für die Phase eines SAR-Interferogramms sind. In diesem Fall ist der Bereich in der Y-Achse und der Azimut ist auf der X-Achse abgebildet. Der Filter war 4 Pixel breit im Range und 16 Pixel breit in Azimuth. Ich versuche, ein Matlab Zuweisungsprojekt mit der folgenden Frage zu vervollständigen: Schreiben Sie eine Funktion namens moveaverage, die einen Skalar namens x als Eingabe-Argument und gibt einen Skalar. Die Funktion verwendet einen Puffer, um vorherige Eingänge zu halten, und der Puffer kann maximal 25 Eingänge halten. Insbesondere muss die Funktion die letzten 25 Eingänge in einem Vektor speichern (der Puffer). Jedes Mal, wenn die Funktion aufgerufen wird, kopiert es das Eingabeargument in ein Element des Puffers. Wenn bereits 25 Eingänge im Puffer gespeichert sind, verwirft es das älteste Element und speichert das aktuelle im Puffer. Nachdem sie die Eingabe im Puffer gespeichert hat, gibt sie den Mittelwert aller Elemente im Puffer zurück. Die Lösung, die ich zur Verfügung stelle, ist die folgende: Nach dem Auto Grader fungiert meine Funktion korrekt, wenn die Werte 1-50 nacheinander übergeben, aber scheitert, wenn Werte einer lärmenden Sinuswelle nacheinander übergeben (was ich mir mitgeteilt habe, Art eines Rundungsfehlers). Ich wäre Ihnen dankbar, wenn einer von euch mir einige Hinweise in Bezug auf die möglichen Fehlerschritte in meinem Code (oben angehängt) geben könnte. Vielen Dank im VorausMoving Average Function Ergebnismovingmean (Daten, Fenster, Dim, Option) berechnet einen zentrierten gleitenden Durchschnitt der Datenmatrix Daten mit einer Fenstergröße, die im Fenster in Dim Dimension angegeben ist, mit dem in der Option angegebenen Algorithmus. Dim und Option sind optionale Eingänge und wird standardmäßig auf 1. Dim und Option optionale Eingänge können ganz übersprungen werden oder können mit einem ersetzen. Zum Beispiel gibt Movingan (Daten, Fenster) die gleichen Ergebnisse wie MovingMan (Daten, Fenster, 1,1) oder MovingMan (Daten, Fenster ,, 1). Eingabedaten Matrix Größe und Dimension ist nur durch die maximale Matrix Größe für Sie Plattform begrenzt. Das Fenster muss eine Ganzzahl sein und sollte ungerade sein. Wenn das Fenster selbst dann ist, wird es auf die nächstniedrigere ungerade Zahl abgerundet. Funktion berechnet den gleitenden Durchschnitt mit einem Mittelpunkt und (Fenster-1) 2 Elementen vor und nach in der angegebenen Dimension. An den Kanten der Matrix wird die Anzahl der Elemente vor oder nachher reduziert, so dass die tatsächliche Fenstergröße kleiner als das angegebene Fenster ist. Die Funktion ist in zwei Teile unterteilt, ein 1d-2d-Algorithmus und ein 3D-Algorithmus. Dies wurde getan, um die Lösungsgeschwindigkeit zu optimieren, insbesondere in kleineren Matrizen (d. h. 1000 x 1). Weiterhin werden mehrere verschiedene Algorithmen zum 1d-2d - und 3d-Problem bereitgestellt, da in bestimmten Fällen der Standardalgorithmus nicht der schnellste ist. Dies geschieht typischerweise, wenn die Matrix sehr breit ist (d. h. 100 x 100000 oder 10 x 1000 x 1000), und der gleitende Durchschnitt wird in der kürzeren Dimension berechnet. Die Größe, in der der Standardalgorithmus langsamer ist, hängt vom Computer ab. MATLAB 7.8 (R2009a) Tags für diese Datei Bitte melden Sie sich an, um Dateien zu markieren. Bitte loggen Sie sich ein, um einen Kommentar oder eine Bewertung hinzuzufügen. Kommentare und Bewertungen (8) Die Funktion befasst sich mit Enden, indem sie den nachlaufenden oder führenden Teil des Fensters schneidet und zu einem führenden oder nachlaufenden gleitenden Durchschnitt anstatt einer zentrierten übergeht. Um mit dem Beispiel zu gehen, das Sie in Ihrem Kommentar gegeben haben, wenn die Fenstergröße 3 ist, dann in einer Mitte von 1 die Funktion Mittelwerte von den Punkten 1 und 2 in einem Zentrum von 2 Punkten 1, 2 und 3 werden in einer Mitte von 9 gemittelt Die Punkte 8, 9 und 10 werden gemittelt und in einem Zentrum von 10 (man nimmt an, daß der Vektor 10 Einträge hat), werden die Punkte 9 und 10 gemittelt. Wie geht es mit den Enden um, beginnt mit einer Fenstergröße, die nur Punkt 1 bei 1, dann 3 Punkte am Punkt 2 und dann in Fenstergröße ansteigt, bis die Fenstergröße in der Funktionseingabe angegeben ist. Schön und einfach. Vielen Dank. Guter Job Sehr nützlich, wie Stephan Wolf sagte. Genau das, worauf ich hinausschaue. Mittlerer gleitender Durchschnitt, der in der Lage ist, in einer Handlung über die ganze Breite zu arbeiten, ohne die Fenstergröße des Filters zu suchen und den Anfang zu bewegen. Great Beschleunigung des Tempo der Technik und Wissenschaft MathWorks ist der führende Entwickler von mathematischen Computing-Software für Ingenieure und Wissenschaftler.
No comments:
Post a Comment